
Quantum Physics 1 - Test 1 with solutions

A particle of mass m is in the state

Ψ = Axe−a(mx2/h̄+3it), (1)

where a is some positive real constant and A = 2
(

2ma
πh̄

)1/4√ma
h̄

.

a. For what potential energy V (x) does Ψ satisfy the Schrödinger equation? (5 points)

Hint : the Schrödinger equation is given by ih̄∂Ψ
∂t

= − h̄2

2m
∂2Ψ
∂x2

+ V (x)Ψ

Solution:
Filling in the Schrödinger equation:

ih̄
∂Ψ

∂t
= − h̄2

2m

∂2Ψ

∂x2
+ V (x)Ψ (2)

ih̄(−3ia)Axe−a(mx2/h̄+3it) = − h̄2

2m

∂

∂x

(
A
−2am

h̄
x2e−a(mx2/h̄+3it) + Ae−a(mx2/h̄+3it)

)
+ V (x)Ψ (3)

3ah̄Axe−a(mx2/h̄+it) = − h̄2

2m

(
A

(
−2am

h̄

)2

x3e−a(mx2/h̄+3it) +
−6am

h̄
Axe−a(mx2/h̄+3it)

)
+ V (x)Ψ

(4)

3ah̄Ψ = − h̄2

2m

((
−2am

h̄

)2

x2Ψ +
−6am

h̄
Ψ

)
+ V (x)Ψ (5)

3ah̄Ψ = −2ma2x2Ψ + 3ah̄Ψ + V (x)Ψ (6)

So V (x) = 2ma2x2.

b. What are the expectation values 〈x〉 and 〈p〉? Explain your answer. (4 points)
Hint : you do not have to work out any integrals.

Solution:
〈x〉 =

∫∞
−∞ x|Ψ|2 = 0, because x|Ψ|2 is an odd function that is integrated along an even interval.

Because of Ehrenfest’s theorem, 〈p〉 = md〈x〉
dt

= 0.



Quantum Physics 1 - Test 2 with solutions

Consider a particle of mass m subject to the harmonic oscillator potential (V (x) = 1
2
mω2x2),

and assume that, at t = 0, the particle is in the state

Ψ(x, 0) =
1√
2

(ψ0(x) + ψ1(x)) .

a. (1 pts) Add the time dependence to Ψ (i.e., find an expression for Ψ(x, t)).
Solution. We have

Ψ(x, t) =
1√
2

(
e−iE0t/h̄ψ0(x) + e−iE1t/h̄ψ1(x)

)
.

b. (3 pts) Calculate 〈x〉. (Hint : use orthonormality to evaluate integrals, and consult
the hints at the bottom.)
Solution. Define f(t) = exp (−iE0t/h̄) and g(t) = exp (−iE1t/h̄). Then,
we have (exploiting orthonormality)

〈x〉 =
1

2

√
h̄

2mω

∫
(fψ0 + gψ1)∗(a+ + a−)(fψ0 + gψ1)dx

=
1

2

√
h̄

2mω

∫
(fψ0 + gψ1)∗(fa+ψ0 + fa−ψ0 + ga+ψ1 + ga−ψ1)dx

=
1

2

√
h̄

2mω

∫
(fψ0 + gψ1)∗(fψ1 + gψ0)dx

=
1

2

√
h̄

2mω

∫
(f ∗gψ∗

0ψ0 + fg∗ψ∗
1ψ1)dx

=
1

2

√
h̄

2mω
(f ∗g + fg∗)

=

√
h̄

2mω
Re{f ∗g}

=

√
h̄

2mω
cos ((E1 − E0)t/h̄) =

√
h̄

2mω
cos (ωt) .



c. (3 pts) Calculate 〈x2〉 and σx.
Solution. First, we note that a+a−ψn = nψn and a−a+ψn = (n+ 1)ψn. We have
(exploiting orthonormality and the fact that squares of ladder operators in this case
yield cancelling terms)

〈
x2
〉

=
1

2
· h̄

2mω

∫
(fψ0 + gψ1)∗(a+ + a−)2(fψ0 + gψ1)dx

=
h̄

4mω

∫
(fψ0 + gψ1)∗(a2

+ + a+a− + a−a+ + a2
−)(fψ0 + gψ1)dx

=
h̄

4mω

∫
(fψ0 + gψ1)∗(a+a− + a−a+)(fψ0 + gψ1)dx

=
h̄

4mω

∫
(fψ0 + gψ1)∗(f · (a+a− + a−a+)ψ0 + g · (a+a− + a−a+)ψ1)dx

=
h̄

4mω

∫
(fψ0 + gψ1)∗(fψ0 + 3gψ1)dx

=
h̄

4mω

∫
(f ∗fψ∗

0ψ0 + 3g∗gψ∗
1ψ1)dx

=
h̄

4mω

(
|f |2 + 3|g|2

)
=

h̄

4mω
(1 + 3) =

h̄

mω
.

By σ2
x = 〈x2〉 − 〈x〉2, we have

σx =

√
h̄(2− cos2 (ωt))

2mω
.

d. (2 pts) Is there a moment in time when the momentum standard deviation σp
can be zero? Explain your answer.
Heisenberg’s uncertainty principle states that σxσp ≥ h̄/2. It follows that σp cannot be zero.

Hint : x and p can be written in terms of ladder operators as follows:

x =

√
h̄

2mω
(a+ + a−) , p = i

√
h̄mω

2
(a+ − a−).

We also have the following ladder operator relations: a+ψn =
√
n+ 1ψn+1, a−ψn =

√
nψn−1.



Quantum Physics 1 - Test 3 Solutions

Consider the moving delta-function well, whose potential and normalized solution to the time-dependent
Schrödinger equation are given by

V (x, t) = −αδ(x− vt)

Ψ(x, t) =

√
mα

h̄
exp

(
−mα|x− vt|/h̄2

)
exp

(
−i

[(
E + 1

2
mv2

)
t−mvx

]
/h̄

)
where v is the (constant) velocity of the well, α > 0, exp(a) = ea and E = −mα2/2h̄2.

a. (3p) Calculate 〈x〉. Hint: You can use the integral
∫∞
0

xne−ax dx = n!
an+1 .

Solution:

〈x〉 = mα

h̄2

∫ ∞

−∞
x exp

(
−2mα|x− vt|/h̄2

)
dx substitute y = x− vt

=
mα

h̄2

(∫ ∞

−∞
y exp

(
−2mα|y|/h̄2

)
dy + vt

∫ ∞

−∞
exp

(
−2mα|y|/h̄2

)
dy

)
=

mα

h̄2

(
2vt

∫ ∞

0

exp
(
−2mαy/h̄2

)
dy +

∫ ∞

0

y exp
(
−2mαy/h̄2

)
dy −

∫ ∞

0

y exp(2mαy/h̄) dy

)
=

mα

h̄2

(
2vt

h̄2

2mα
+

h̄4

4m2α2
− h̄4

4m2α2

)
= vt

b. (2p) What is the probability to find the particle to either side of the well?
Solution: Because Ψ is centered at the well (〈x〉 = vt), you have a 50% chance to find the particle
at either side of the well.

c. (1p) Calculate 〈p〉. Solution: 〈p〉 = m d 〈x〉/dt = mv.

d. (3p) Recall the equation for the probability current

J ≡ ih̄

2m

(
Ψ
∂Ψ∗

∂x
−Ψ∗∂Ψ

∂x

)
.

Calculate the probability current for this wave function. Which direction does the probability current
flow? (1p) Bonus: Express J in terms of Ψ
Hint: To avoid having to differentiate the absolute value, write Ψ = cf(x, t)g(x, t) with each f, g
containing one exponent, such that f = f ∗ and write out J before doing any differentiation.

Solution: We define Ψ(x, t) = cf(x, t)g(x, t) where f is the first exponent and g is the second.
This leads to f ∗ = f , gg∗ = 1, g′ = (i/h̄)mv · g and (g∗)′ = −(i/h̄)mv · g∗.

J ≡ ih̄

2m

(
Ψ
∂Ψ∗

∂x
−Ψ∗∂Ψ

∂x

)
=

ih̄

2m
(cfg · c(f ′g∗ + f(g∗)′)− cfg∗ · c(f ′g + fg′))

=
ih̄

2m

(
c2ff ′gg∗ + c2f 2g(g∗)′ − c2ff ′gg∗ − c2f 2g′g∗

)
=

ih̄

2m
c2f 2

(
g(g∗)′ − g′g∗

)
=

ih̄

2m
c2f 2

(
− i

h̄
mvgg∗ − i

h̄
mvgg∗

)
=

mvα

h̄2 exp
(
−2mα|x− vt|/h̄2

)
= v|Ψ|2

The current flows to the right (positive x).



Quantum Physics test 4

Consider the following potential: V = 0 for x < 0 and V = −Vc for x > 0 , where Vc is a positive
constant. For a particle moving to the right with energy E0 > 0:

1. Sketch the potential and write the solution of the eigenvalue equation Ĥψ = Eψ for x < 0 and x > 0,
considering no incoming wave from the right (3 points).
The solution is a superposition of plane waves

ψ(x) =

Aeik1x +Be−ik1x , x < 0
Feik2x , x > 0

where k1 =
√

2mE0/} and k2 =
√

2m(E0 + Vc)/}.

2. Find the reflection coefficient R in terms of E0 and Vc (3 points).
R is defined as R = |B|2/|A|2. Continuity of the wavefunction and its derivative at x = 0 givesA+B = F

k1(A−B) = k2F
⇒ (k2 − k1)A = (k2 + k1)B ,

and therefore R is equal to

R =
(
k2 − k1
k2 + k1

)2

= (
√
Vc + E0 −

√
E0)2

(
√
Vc + E0 +

√
E0)2 .

3. Verify that R and T (transmission coefficient) sum up to 1. T is given by the formula

T =
√
E0 + Vc

E0

|F |2

|A|2
,

with A and F the coefficients of the plane wave travelling to the right for x < 0 and x > 0 accordingly
(4 points).

2A = k1 + k2
k1

F ⇒ |F |
2

|A|2
= 4k2

1
(k1 + k2)2 = 4E0

(
√
Vc + E0 +

√
E0)2 ,

and so

T =
√
E0 + Vc

E0

4E0
(
√
Vc + E0 +

√
E0)2 ,

T +R = 1 is satisfied.

1



Test 5 Quantum Physics 1

a) Using the formula:

σ2
Aσ

2
B ≥

(
1

2i
〈[Â, B̂]〉

)2

, (1)

show that σHσp ≥ h̄
2 〈

dV
dx 〉. (3 points)

Solution: Employ a test function g(x)

[H, p]g(x) = [V (x),−ih̄ ∂

∂x
]g(x) = −ih̄V (x)

∂

∂x
g(x) + ih̄

∂

∂x
(V (x)g(x))

= −ih̄V (x)
∂

∂x
g(x) + ih̄V (x)

∂

∂x
g(x) + ih̄

∂

∂x
(V (x))g(x)

= ih̄
∂

∂x
(V (x))g(x)

Then plug in the result.

b) Consider the harmonic oscillator (V (x) = 1
2mω

2x2). Does the uncertainty
relation derived above give you information about the ground state? What
does it say about the excited states?

Solution: The ground state and excited states are stationary states, so
the uncertainty relation tells you < V ′(x) >∝< x >= 0. This is because
all stationary states are either odd or even.

c) A generic state of the harmonic oscillator is a superposition of the ground
state and all the excited states. What does the uncertainty relation tell
you about generic states? (3 points)

Solution: A generic state is not a stationary state, so the left-hand side of
the uncertainty relation becomes non-zero. This means < x > can obtain
a non-zero expectation value. Even though all eigenstates are even or odd,
the superposition of them does not need to be. The uncertainty principle
now relates the three quantities σH , σp and < x >.

1



Quantum Physics 1 - Test 6

Consider the ground state of hydrogen, of which the wave function is given by:

ψ100(r, θ, φ) =
1√
πa3

e−r/a.

a) (4p) Calculate 〈V 〉. Hint: Use the fact that 〈V 〉 = − h̄2

ma

〈
1

r

〉
, and use integration

by parts.
Solution:〈

1

r

〉
=

1

πa3

∫ 2π

0

∫ π

0

∫ ∞

0

1

r
e−2r/ar2 sinφ dr dφ dθ

=
4

a3

∫ ∞

0

re−2r/a dr =
4

a3

(
−a
2
re−2r/a

∣∣∣∣∞
0

− −a
2

∫ ∞

0

e−2r/a dr

)
=

2

a2

∫ ∞

0

e−2r/a dr =
2

a2
−a
2
e−2r/a

∣∣∣∣∞
0

=
1

a

〈V 〉 = − h̄2

ma2

b) (3p) Using your result of (a), calculate 〈p2〉. If you did not manage to complete (a),
find 〈p2〉 in terms of 〈V 〉. The energy of the ground state ψ100 is given by

E1 = − h̄2

2ma2
.

Solution:
We know that Hψ100 = E1ψ100 and H = p2

2m
+ V , so we can combine the two into

〈p2〉 = 2m(E1 − 〈V 〉).

〈
p2

〉
= −2m

(
h̄2

2ma2
− h̄2

ma2

)
= −2h̄2

a2

(
1

2
− 1

)
=
h̄2

a2

c) (2p) What is 〈px2〉? Hint: You do not have to do any long calculations.
Solution: Since 〈p2〉 = 〈px2〉 + 〈py2〉 + 〈pz2〉 and since the wave function is only
dependent on r (not φ and θ), we have that 〈px2〉 = 1

3
〈p2〉 = h̄2

3a2
.



Quantum Physics 1 - Test 7

Two particles, each of mass m, are attached to the ends of a massless rigid rod of length a. This system
(called a rigid rotor) is free to rotate in all three dimensions about the fixed center point. The classical
energy of this system is given by E = L2/(2I), where I = ma2/2 is the moment of inertia of the system.

Now, we consider the case that a is very small and hence we will describe this system quantum me-
chanically. Thus, we will use operators, resulting in the Hamiltonian below:

Ĥ =
L̂2

2I
.

(a) (2 pts) Find the allowed energies of the rigid rotor (i.e., find the eigenvalues of Ĥ).

Solution. The eigenvalues of L̂2 are known: h̄2l(l + 1), so we have

En =
h̄2n(n+ 1)

2I
=
h̄2n(n+ 1)

ma2

where we label the energies with n (n = 0, 1, 2, . . .) rather than with l.

(b) (2 pts) Find the corresponding degeneracies.
Solution. Given l corresponding to the eigenfunctions fm

l , the degeneracy is equal to the number
of different eigenfunctions fm

l which is equal to the number of different values m can attain. This
number is, as always, equal to 2l + 1. This means that the degeneracy corresponding to En is equal
to 2n+ 1, for all n.

(c) (3 pts) Construct the ground state of the rigid rotor.
Solution. The normalized eigenfunctions corresponding to energy En are given by the spherical
harmonics Y m

n (θ, φ) (m = −n,−n + 1, . . . , n − 1, n). In this case, n = 0 so m = 0 and hence the
ground state is Y 0

0 (θ, φ), which is given to be

Y 0
0 (θ, φ) =

1

2
√
π
.

(d) (2 pts) Is there a difference between the classical ground state (i.e., the lowest possible value for the
classical energy) and the quantum mechanical ground state energy? Explain how this is compatible
with Heisenberg’s uncertainty principle.
Solution. Classically, the lowest possible value for the energy is simply zero. The energy correspond-
ing to the quantum mechanical ground state is E0 = 0. This means that there is no difference.
Furthermore, Heisenberg always places a constraint on two quantum numbers. In the harmonic os-
cillator, for example, to obtain an energy equal to zero, one needs to set both x and p equal to zero
which is impossible due to Heisenberg’s uncertainty principle. In the case of the rigid rotor, we can
simply set the energy equal to zero by just taking our quantum number n to be zero.



Test 8 Quantum Physics 1

a) Consider a system of two non-interacting identical particles, one in state
ψa and one in state ψb. These states are orthogonal and normalized.
Show that:

〈(x1 − x2)2〉 = 〈x2〉a + 〈x2〉b − 2〈x〉a〈x〉b ∓ 2|〈x〉ab|2

where 〈x〉ab =
∫
xψ?

a(x)ψb(x)dx. This term indicates the exchange
force. It takes the upper sign in ∓ for bosons and the lower for fermions.
Solution: See section 5.1.2 of the Griffiths book for the full solution.

b) Consider two non-interacting identical bosons in the one-dimensional
harmonic oscillator potential, V = 1

2
mω2x2. The ground state for a

single particle in this potential is:

ψ0 =
(mω
πh̄

)1/4
e−

mω
2h̄

x2

Is there an exchange force in the ground state of the two-particle sys-
tem? If so, is it attractive or repulsive? Assume the particles are in
the same spin state.

Solution: When the particles are in the same spin state, the spin part
of the wavefunction is symmetric under exchange. Since the overall
wavefunction is symmetric, the spatial wavefunction is symmetric as
well. The ground state is therefore simply Ψ0(x1, x2) = ψ0(x1)ψ0(x2).
Then 〈x〉ab =

∫
xψ?

0(x)ψ0(x)dx = 0, since the integrand is odd. There
is no exchange force.

c) Consider two non-interacting identical fermions in the same potential.
However, this time the particles are in the singlet state where the total
spin is equal to zero. Is there an exchange force in the ground state of
this system? If so, is it attractive or repulsive?

Solution: This time the spin part is anti-symmetric under exchange.
This means that the spatial wavefunction is symmetric under exchange,
even though the particles are fermions. Again, the spatial part of the
ground state wavefunction is Ψ0(x1, x2) = ψ0(x1)ψ0(x2), so there is no
exchange force.


